The Dynamics of Commodity Production Cycles

These classic models are from Dennis Meadows’ dissertation, the Dynamics of Commodity Production Cycles:

While times have changed, the dynamics described by these models are still widespread.

These versions should work in all recent Vensim versions:

DLMhogs2.vpm DLMhogs2.mdl

DLMgeneric2.vpm DLMgeneric2.mdl


A System Zoo

I just picked up a copy of Hartmut Bossel’s excellent System Zoo 1, which I’d seen years ago in German, but only recently discovered in English. This is the first of a series of books on modeling – it covers simple systems (integration, exponential growth and decay), logistic growth and variants, oscillations and chaos, and some interesting engineering systems (heat flow, gliders searching for thermals). These are high quality models, with units that balance, well-documented by the book. Every one I’ve tried runs in Vensim PLE so they’re great for teaching.

I haven’t had a chance to work my way through the System Zoo 2 (natural systems – climate, ecosystems, resources) and System Zoo 3 (economy, society, development), but I’m pretty confident that they’re equally interesting.

You can get the models for all three books, in English, from the Uni Kassel Center for Environmental Systems Research, Follow the Archiv(e) link on the home page and enter the downloads Archiv(e). This will put you in a file browser. Choose the Software folder, then the Zoo folder to obtain a .zip archive of the zoo models for the whole series, in Vensim .mdl format.

To tantalize you, here are some images of model output from Zoo 1. First, a phase map of a bistable oscillator, which was so interesting that I built one with my kids, using legos and neodymium magnets:

Continue reading “A System Zoo”

Bifurcating Salmon

A nifty paper on nonlinear dynamics of salmon populations caught my eye on today. The math is straightforward and elegant, so I replicated the model in Vensim.

A three-species model explaining cyclic dominance of pacific salmon

Authors: Christian Guill, Barbara Drossel, Wolfram Just, Eddy Carmack

Abstract: The four-year oscillations of the number of spawning sockeye salmon (Oncorhynchus nerka) that return to their native stream within the Fraser River basin in Canada are a striking example of population oscillations. The period of the oscillation corresponds to the dominant generation time of these fish. Various – not fully convincing – explanations for these oscillations have been proposed, including stochastic influences, depensatory fishing, or genetic effects. Here, we show that the oscillations can be explained as a stable dynamical attractor of the population dynamics, resulting from a strong resonance near a Neimark Sacker bifurcation. This explains not only the long-term persistence of these oscillations, but also reproduces correctly the empirical sequence of salmon abundance within one period of the oscillations. Furthermore, it explains the observation that these oscillations occur only in sockeye stocks originating from large oligotrophic lakes, and that they are usually not observed in salmon species that have a longer generation time.

The paper does a nice job of connecting behavior to structure, and of relating the emergence of oscillations to eigenvalues in the linearized system.

Units balance, though I had to add a couple implicit scale factors to do so.

The general results are qualitatitively replicable. I haven’t tried to precisely reproduce the authors’ bifurcation diagram and other experiments, in part because I couldn’t find a precise specification of numerical methods used (time step, integration method), so I wouldn’t expect to succeed.

Unlike most SD models, this is a hybrid discrete-continuous system. Salmon, predator and zooplankton populations evolve continuously during a growing season, but with discrete transitions between seasons.

The model uses SAMPLE IF TRUE, so you need an advanced version of Vensim to run it, or the free Model Reader. (It should be possible to replace the SAMPLE IF TRUE if an enterprising person wanted a PLE version). It would also be a good candidate for an application of SHIFT IF TRUE if someone wanted to experiment with the cohort age structure.


For a more policy-oriented take on salmon, check out Andy Ford’s work on smolt migration.

The Energy Transition and the Economy

Model Name: The Energy Transition and the Economy: A System Dynamics Approach

Citation: John D. Sterman, 1981. PhD Dissertation, MIT Sloan School of Management

Source: Replicated by Miguel Vukelic (a heroic effort)

Units balance: Yes

Format: Vensim (Contains data variables and thus requires an advanced version or the free Model Reader)

The Energy Transition and the Economy (Vensim .vpm)

Models in the Special Issue of the System Dynamics Review on Environmental and Resource Systems

Submitted by Richard Dudley:

Models in the Special Issue of the System Dynamics Review on Environmental and Resource Systems, Andrew Ford & Robert Cavana, Editors. System Dynamics Review, Volume 20, Number 2, Summer of 2004.

  • Modeling the Effects of a Log Export Ban in Indonesia by Richard G. Dudley
  • The Dynamics of Water Scarcity in Irrigated Landscapes: Mazarron and Aguilas in South-eastern Spain by Julia Martinez Fernandez & Angel Esteve Selma
  • Misperceptions of Basic Dynamics: The Case of Renewable Resource Management by Erling Moxnes
  • Models for Management of Wildlife Populations: Lessons from Spectacle Bears in Zoos and Gizzly Bears in Yellowstone by Lisa Faust, Rosemary Jackson, Andrew Ford, Joanne Earnhardt and Steven Thompson
  • Modeling a Blue-Green Algae Bloom by Steven Arquitt & Ron Johnstone

See the following web site for article summaries and downloadable models described in this special issue: