Vensim doesn’t have a function for the cumulative normal distribution, but it’s easy to implement via a macro. I used to use a polynomial cited in Numerical Recipes (error function, Ch. 6.2):
:MACRO: NCDF(x)
NCDF = 1Complementary Normal CDF
~ dmnl
~ 
Complementary Normal CDF= ERFCy/2 ~ dmnl ~ 
ERFCy = IF THEN ELSE(y>=0,ans,2ans) ~ dmnl ~ http://www.library.cornell.edu/nr/bookcpdf/c62.pdf 
y = x/sqrt(2) ~ dmnl ~ 
ans=t*exp(z*z1.26551+t*(1.00002+t*(0.374092+t*(0.0967842+ t*(0.186288+t*(0.278868+t*(1.1352+t*(1.48852+ t*(0.822152+t*0.170873))))))))) ~ dmnl ~ 
t=1/(1+0.5*z) ~ dmnl ~ 
z = ABS(y) ~ dmnl ~ 
:END OF MACRO:
I recently discovered a better approximation here, from algorithm 26.2.17 in Abromowitz and Stegun, Handbook of Mathematical Functions:
:MACRO: NCDF2(x)
NCDF2 = IF THEN ELSE(x >= 0,
(1  c * exp( x * x / 2 ) * t *
( t *( t * ( t * ( t * b5 + b4 ) + b3 ) + b2 ) + b1 )), ( c * exp( x * x / 2 ) * t *
( t *( t * ( t * ( t * b5 + b4 ) + b3 ) + b2 ) + b1 ))
)
~ dmnl
~ From http://www.sitmo.com/doc/Calculating_the_Cumulative_Normal_Distribution
Implements algorithm 26.2.17 from Abromowitz and Stegun, Handbook of Mathematical
Functions. It has a maximum absolute error of 7.5e^8.
http://www.math.sfu.ca/

c = 0.398942
~ dmnl
~ 
t = IF THEN ELSE( x >= 0, 1/(1+p*x), 1/(1p*x))
~ dmnl
~ 
b5 = 1.33027
~ dmnl
~ 
b4 = 1.82126
~ dmnl
~ 
b3 = 1.78148
~ dmnl
~ 
b2 = 0.356564
~ dmnl
~ 
b1 = 0.319382
~ dmnl
~ 
p = 0.231642
~ dmnl
~ 
:END OF MACRO:
In advanced Vensim versions, paste the macro into the header of your model (View>As Text). Otherwise, you can implement the equations inside the macro directly in your model.