A natural driver of increasing CO2 concentration?

You wouldn’t normally look at a sink with the tap running and conclude that the water level must be rising because the drain is backing up. Nevertheless, a physically similar idea has been popular in climate skeptic circles lately.

You actually don’t need much more than a mass balance to conclude that anthropogenic emissions are the cause of rising atmospheric CO2, but with a model and some data you can really pound a lot of nails into the coffin of the idea that temperature is somehow responsible.

This notion has been adequately debunked already, but here goes:

This is another experimental video. As before, there’s a lot of fine detail, so you may want to head over to Vimeo to view in full screen HD. I find it somewhat astonishing that it takes 45 minutes to explore a first-order model.

Here’s the model: co2corr2.vpm (runs in Vensim PLE; requires DSS or Pro for calibration optimization)

Update: a new copy, replacing a GET DATA FIRST TIME call to permit running with simpler versions of Vensim. co2corr3.vpm

A few parts per million

IMG_1937

There’s a persistent rumor that CO2 concentrations are too small to have a noticeable radiative effect on the atmosphere. (It appears here, for example, though mixed with so much other claptrap that it’s hard to wrap your mind around the whole argument – which would probably cause your head to explode due to an excess of self-contradiction anyway.)

To fool the innumerate, one must simply state that CO2 constitutes only about 390 parts per million, or .039%, of the atmosphere. Wow, that’s a really small number! How could it possibly matter? To be really sneaky, you can exploit stock-flow misperceptions by talking only about the annual increment (~2 ppm) rather than the total, which makes things look another 100x smaller (apparently a part of the calculation in Joe Bastardi’s width of a human hair vs. a 1km bridge span).

Anyway, my kids and I got curious about this, so we decided to put 390ppm of food coloring in a glass of water. Our precision in shaving dye pellets wasn’t very good, so we actually ended up with about 450ppm. You can see the result above. It’s very obviously blue, in spite of the tiny dye concentration. We think this is a conservative visual example, because a lot of the table mass was apparently a fizzy filler, and the atmosphere is 1000 times less dense than water, but effectively 100,000 times thicker than this glass. However, we don’t know much about the molecular weight or radiative properties of the dye.

This doesn’t prove much about the atmosphere, but it does neatly disprove the notion that an effect is automatically small, just because the numbers involved sound small. If you still doubt this, try ingesting a few nanograms of the toxin infused into the period at the end of this sentence.

Bathtub Still Filling, Despite Slower Inflow

Found this bit, under the headline Carbon Dioxide Levels Rising Despite Economic Downturn:

A leading scientist said on Thursday that atmospheric levels of carbon dioxide are hitting new highs, providing no indication that the world economic downturn is curbing industrial emissions, Reuters reported.

Joe Romm does a good job explaining why conflating emissions with concentrations is a mistake. I’ll just add the visual:

CO2 stock flow structure

And the data to go with it:

CO2 data

It would indeed take quite a downturn to bring the blue (emissions) below the red (uptake), which is what would have to happen to see a dip in the CO2 atmospheric content (green). In fact, the problem is tougher than it looks, because a fall in emissions would be accompanied by a fall in net uptake, due to the behavior of short-term sinks. Notice that atmospheric CO2 kept going up after the 1929 crash. (Interestingly, it levels off from about 1940-1945, but it’s hard to attribute that because it appears to be within natural variability).

At the moment, it’s kind of odd to look for the downturn in the atmosphere when you can observe fossil fuel consumption directly. The official stats do involve some lag, but less than waiting for natural variability to shake out of sparse atmospheric measurements. Things might change soon, though, with the advent of satellite measurements.

State Emissions Commitments

For the Pangaea model, colleagues have been compiling a useful table of international emissions commitments. That will let us test whether, if fulfilled, those commitments move the needle on global atmospheric GHG concentrations and temperatures (currently they don’t).

I’ve been looking for the equivalent for US states, and found it at Pew Climate. It’s hard to get a mental picture of the emissions trajectory implied by the various commitments in the table, so I combined them with emissions data from EPA (fossil fuel CO2 only) to reconcile all the variations in base years and growth patterns.

The history of emissions from 1990 to 2005, plus future commitments, looks like this:

State emissions commitments, vs. 1990, CO2 basis

Note that some states have committed to “long term” reductions, without a specific date, which are shown above just beyond 2050. There’s a remarkable amount of variation in 1990-2005 trends, ranging from Arizona (up 55%) to Massachusetts (nearly flat).

Continue reading “State Emissions Commitments”