

Dynamic Cohorts

Tom Fiddaman ISDC, 2017

Contents

- Motivation
- Aging Chains
- Workarounds
- Dynamic cohorts
- Implications & Extensions

What are we looking for?

Maximize quality

- Accuracy
- Operational correspondence with policies
- Speed
- Transparency

Minimize effort

- Construction
- Initialization
- Calibration
- Reuse

Why disaggregate?

- Components of interest have different dynamics
- A priori aggregation is hard
- Correspondence with measurements
- Representation of policies

State vs. Categorical Representation

Vs.

(

Aging Chains

Advantages

- The obvious approach in a "flat" language (no arrays)
- Visible
- Works when you don't need explicit age interpretation

Limitations

- Dispersion
- Abrupt dynamics
- Transition time ≠ agedifference
- Lots of work, especially for coflows

Dispersion

Abrupt Age Shifts in Dynamics

Discrete Time

- Set time step (DT) = cohort duration
- + No dispersion
- No flexibility to represent fast dynamics
- —No ability to test for stability

Shifting

Instead of moving people continuously, move them at discrete times

- + No dispersion
- + Flexible time step

—Sawtooth behavior

Continuous Cohorting

- Use hidden internal states, one per time step (DT)
- + No dispersion

Potentially heavy computational burden

Robert L. Eberlein and James P. Thompson, 2013. Precise modeling of aging populations. *Syst. Dyn. Rev.* 29, 87–101.

Diagramming Aging Chains

Agents

- Model individuals
- Age is a state of the person, not a stock of people
- + No dispersion
- + Any nonlinear behavior can be represented
- ? Discrete, stochastic behavior
- Big computational and cognitive burdens

I have a map of the United States ... actual size.

It says, "Scale: 1 mile = 1 mile." I spent last summer folding it.

- Steven Wright

Dynamic Cohorts

 Moving things through age categories is hard work and causes dispersion.

So, don't move them!

 Instead, maintain a dynamic list of cohorts, with age as a state.

Ingredients

- Create cohorts "born" within an interval
 - Rationale: people born at the same time have similar attributes and experiences
 - Not conceptually different from disaggregation by gender, region, vehicle type
- Accumulate age (or calculate it from the birth date)
- Represent internal dynamics of the group
- Track until you lose interest
 - Too few members
 - Age > maximum age of interest
- Calculate aggregates for feedback to the rest of the model

Implementation in Ventity

1/

Cohort Entity

Population Entity

Population

Cohort Life Cycles

Parameters corresponding with Japan in Eberlein & Thompson

17 Vantana Systems Inc

Initialization

Table 1 Cohort Initialization Data

			group	group	Creation	Life	
Enabled	Time	CohortID	gender	region	Time	Years	Population
TRUE		F AO	F	Japan 1yr	2009		501613
TRUE		FA1	F	Japan 1yr	2008		512203
TRUE		FA2	F	Japan 1yr	2007		522909
TRUE		FA3	F	Japan 1yr	2006		530882
TRUE		FA4	F	Japan 1yr	2005		536693

Precision

Population over 90, Japan

Dynamic Cohorting in Comparison

Advantages

- Low computational burden
- Clear mapping of agent to group
- Simple internal dynamics
- Easy debugging

Differences

- Data-model matching
- Initialization in equilibrium

Limitations

- Nonlinearity in group dynamics
- Heterogeneity in group members

Projections at Different Resolutions 1, 5, 10 year cohorts

Population

Population over 90

Two Ways to Fail

Insufficient detail

- Cohorts too wide
- Neglected heterogeneity

Omitted dynamics

- Age-Period-Cohort effects
- Time-varying rates
- Internal dynamics of groups

Example: Infection Model x Cohort

Introduce a disease into an age-disaggregated population, with

- Infection onset proportional to age, and
- Infection-induced mortality

Infected Population

Example: Vehicle Fleet x Model Year

Vehicle Utilization Effect on Scrap Rate

Applications

Living things

- People health,education
- Fish

Perishables

- Pharmaceuticals
- Food

Capital

- Vehicles
- Buildings

Services

- Loans
- Bonds
- Contracts

Bottom Line 1

- Cohorts are everywhere
- Cohorts are just a special case of aggregation questions we face every time we model
- We need tools that make it easy to quickly build and test alternative specifications

Bottom Line 2

- Managers have always had an appetite for tactical detail
- Big data availability is growing
- We need ways to fill the appetite and exploit the data without losing the essential insights of feedback and accumulation.

THANK YOU

Cohort Duration Aggregation

Age-Period-Cohort Effects

- Vital Rate = F(Age, Period, Cohort)
- E.g., Mortality Rate = F(Age, Current Time, Birth Year)
 - Age: aging process effect on mortality
 - Current time: medical technology and risk
 - Birth year: cohort has common experience
- Statistical challenge: Age = Current Time Birth Year
- Dynamic challenge: Cohorts have common dynamics and experience
- Vital Rate = F(Age, Period, Cohort, Experience)