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Abstract

Jay Forrester cautioned that "fitting curves to past system data can be
misleading.” Certainly that can be true, if the model is deficient. But we can
have our cake and eat it too: a good model that passes traditional SD quality
checks and fits the data can yield unique insights. With recent computing
advances, it's practical to confront models with all available information,
including time series data, to yield the best possible estimate of the state of a
system and its uncertainty. That makes it possible to construct policies that are
robust not just to a few indicator scenarios, but to a wide variety of plausible
futures. This talk will discuss how calibration, Kalman filtering, Markov Chain
Monte Carlo and sensitivity analysis work together, with particular attention to

Bayesian inference. The emphasis will be on practical implementation with a
few examples from real projects.
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— Kalman filtering
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— Markov Chain Monte Carlo (MCMC)
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A Classic SD Perspective on Data

fitting curves to past system data can be misleading

given a model with enough parameters to manipulate, one can cause any model to
trace a set of past data curves

adjusting model parameters to force a fit to history may push those parameters
outside of plausible values as judged by other available information.

[tracing history] does not give greater assurance that the model contains the
structure that is causing behavior in the real system

the particular curves of past history are only a special case
Exactly matching a historical time series is a weak indicator of model usefulness.

We should not want the model to exactly recreate a sample of history but rather that
it exhibit the kinds of behavior being experienced in the real system.

System Dynamics—the Next Fifty Years, Jay W. Forrester, D-4892 (2007)
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What happens if you ignore the data?

Save lots of time on collection, preprocessing and calibration

+ Potentially reallocate to client interaction, robustness testing and scenario
experimentation

Less cognitive load for participants

No learning about the data, or from the data directly
No contribution to model quality from tests against data

Hard to verify that asserted reference modes or decision structures match
reality

Less face validity of historical runs

Difficulty understanding the gaps between a priori parameter values and
most plausible values, given the model

No objective basis for parameter values or confidence bounds
Hard to understand the joint uncertainty of a parameter set

10
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State COVID19 Modeling

Context

— Early days of the pandemic — April-June 2020
— Red state with a tech-savvy governor

Questions
— Tactical interpretation of new data (almost daily)

— What emergency medical resources will be needed (i.e. when will hospitalization
peak, at what level)?

— How many tests are needed?
— What are the consequences of reopening (thereby cancelling many NPIs)?

No data = no project

11



e Enhanced SEIR
Higher-order delay structure

— Test coverage effects
— NPI policies
— Behavior, compliance

Detailed hospital sector
e Integrate data streams
Cases, hospitalization, deaths

— Test composition
— Mobility (cell phones)

Weather, population, etc.
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The Model
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Detail

2 risk groups

50 states

50 x 50 interstate transmission (reduced by adjacency)
45 NPIs (essentially exogenous step functions)

5 hospital resource classes

7353 stocks
13003 constants (about 300 estimated)
2351 time series data (about 400 used for estimation)
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Project Architecture

Covidtracking.com v csv & Excel files
Mobility T -
Data Team  Ad hoc surveillance | | R [D  Model ]
ata Mode
Census \
BU NPIs Integrated .csv
Xlsx->.cin I

Git Repository

N 1

Data &
vata & Integrated Model A Optimizer Output
Model Team initialization
r N .out
L[ SEIR+data . — | MCMC Sampl
Subsystem Hospital aMPIES
L ) Subsystem) tab, .vsc
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Daily Routine

 Data N2
— Update and push to SVN \\’6"\
— Discuss & \Q,Q
e Model ecfo
— Pull data and import to vdf QQ(
— Launch optimization ~ (\6\
— Review callbra’r" \((\Q «S
e Policy discr’-
— ReVv’ C\G&.ent R and prognosis for growth/decline
&C <r how new policies might influence dynamics
0\6(\)_,<plore contingencies and uncertainty

e\‘?’(\‘

15



VENTANA

Calibration

Mix of conventional hill-climbing (Powell) and MCMC

Case, hospitalization and death counts turned out to have an overdispersed
Poisson distribution — least squares (assuming Normal distribution) didn’t

work well

Timely computation required parallel Vensim and a 60-core HPC server.

16



Tax Day, 2020: Reason for concern?
Positive Tests
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10 Days Later
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Outputs

Current Behavior 20200524 v37f

50.0%  75.0% [ 95.0% | 100.0%

Total Deaths ]

5000
2500 i <— Actual Today
| ‘=<— Actual 2020

2080-03-01 2020-05-31 2020-08-30 2020-11-29 2021-02-28
Date

VENTANA 19

1250




Average Deaths across Uncertain Scenarios
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Some representative findings

Question | Model-based advice Outcome

Is a 3x spike in cases in a few days a
looming problem, or a blip?

Should a sports arena be converted to
a field hospital?

Is it worth it to buy enough tests for
10,000/day?

Is contact tracing worth it?

Do masks work?

What happens when you reopen the
economy?

Don't panic. Didn’t panic. It was a blip.

Probably not needed, and the model Did it anyway. Not used.
would provide some early warning if it

is.
Probably don’t need that many, but at Testing about 5,000/day; leading
least 5,000 helps mitigate worst nation per capita.

scenarios

Yes, if followed up by other measures. Leading nation per capita.
Later overwhelmed and challenged by
noncompliance, largely abandoned.

No data. Any cheap measure that No mask order; low usage.
reduces transmission without
distancing is a win.

Resurgence of disease, unless you Reopened without a strategy. Big
have a strong NPI strategy. fall/winter wave.
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Outcomes

Stopped chasing noise in the data
Demonstrated that hospital loads requiring top-tier response were unlikely

Warned that early reopening with optional NPIs incurred some very
nonlinear risks

Within a few months,
— Predicted death tolls were modest
— Response choices were fully politicized

As a result,
— Our contract was not renewed
— Models were basically squeezed out of the debate
— Health-economy tradeoffs were made with little or no explicit reasoning

— It was probably possible to have lower health and economic consequences together .



Some challenges

Early

NNNNNNN

Extremely sparse data overall

Low test coverage and
resulting biases

Uncertainty about everything,
especially

— True prevalence

— Fatality rates

— Hospital treatments

— Policy effectiveness

Time pressure

Ongoing

Long delays

Limited surveillance of the
general population

Difficulty observing actual
behavior

Data restatements and
definitional changes

Difficulty connecting to
economic effects

23
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Methods

Prerequisite: Data

Synthetic data

Naive Calibration

Maximum likelihood

Kalman filtering

Bayesian inference

Markov Chain Monte Carlo (MCMC)

24



My Typical Playbook

« Build/refine structure A

v
« Load data
« Create an interface view with model-data comparisons
« Do some hand calibration to see what parameters are interesting

\/

Do a quick & dirty calibration
« Weight payoff with log transform and
wild guesses at fractional errors

o/

Evaluate fit, work with model more, v
ponder what is really problematic or - Design policies
uncertain « Test policies deterministically

|

« Develop a more carefully weighted payoff,
consider Kalman filtering, priors

« Do MCMC to generate a confidence sample

« Do sensitivity runs based on the sample N

=> . Do policy experiments with sensitivity

25
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Fundamentally, what are we doing?

Create a model of the process that generated the data
— Dynamic structure
— Distribution of errors in the measurement process
— Distribution of disturbances to the system state
— Priors for unknown parameters or informally characterized behaviors

Assuming the model is right, what parameters are most likely to have
generated the data, and (maybe) are most consistent with our priors?

Output

— Frequentist: if I keep repeating this experiment, the parameter will be in my
confidence interval 95% of the time

— Bayesian: I'm 95% certain that the parameter lies within my credible interval

26
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Synthetic data

Purpose:

Test your procedures end to end

Can you get useful parameter estimates from limited data?

How important are sources of noise or other features of the data?
What if the model structure is a simplified version of reality?

Procedure

Interpret your model as the truth
Change some parameters to make things harder
Add noise to some model outputs and/or states
o Measured cases = RANDOM FUNCTION( true cases )
o Patients = INTEG( admitting — discharching + NOISE, initial patients )
Truncate the frequency and duration of the measurements
Use the synthetic data to see if you can recover the parameters
More fun if you have an adversary!

27
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Naive Calibration

Build a control panel that compares model and data series
Do some hand calibration to discover what is important

Automate using the optimizer
Don’t worry about the details

Essence:
— Create a payoff or objective function that characterizes the goodness of fit
— Use some algorithm to iterate over a list of parameters to maximize the payoff

28
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Maximum Likelihood

Choose the value of parameters that maximizes the likelihood of observing
the data given the model

This yields a Maximum Likelihood Estimator (MLE)
Suppose there is more than one observation
— Then the likelihood is the product of the individual likelihoods for each data point

— Working with log likelihood is easier, because In() converts the product to a sum

Likelihood expresses the probability of getting the data observed from your
model, not the chance that the model is right

29
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Log-Likelihood
Gaussian errors

model—data.?
=2 /
Likelihood = 2

1 _
o2
« This is the PDF of the Gaussian (Normal) distribution
« O represents the scale of the error associated with a data point
« 0 might vary with time, or with the scale of the data
* You can estimate o

Maximizing Log(Likelihood) is the same as maximizing Likelihood, but more
convenient because multiplication becomes addition

Log(Likelihood) =
— LN(o) - the bigger the g, the lower the likelihood, as it's spread thinner
— LN(+/2m) - this is a constant we can ignore

2
- s ) / » - the weighted sum of squares, adjusted by the divisor /2

(model—data

30
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What does the likelihood look like?

" Log Likelihood

Normal

Robust

“Truth” Measured Value

31



Kalman filtering

e Motivation
— The model may not reflect everything that affects the system state
o Random noise from events (e.g., Poisson arrivals)
o Structure we don’t know about
— Over time, the model state drifts away from reality
e The Kalman filter is a special case of Particle Filtering with Gaussian noise

Measurement
Error

v

Driving Noise [ Patients Data

el

37
oy, Zs P~ patients X )
Admitting j \'Discharging

Mormal Arrival \ \
Rate
Crowding Mormal Time to

Treat
Effect of
Weekend

VENTANA Random Effects
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If the model is in the wrong part of the state space,
its response may be wrong

Time

If you're
estimating a
parameter that
affects this part
of the trajectory,
the response may
be particularly
wrong

33



The Kalman filter updates the model trajectory towards the data

State Update state

towards data

Time

VENTANA
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How far? Depends on the estimated quality of the model and data

\ Good model,
State bad data

Aodel,
_— good data

O Data

Model

Time

35



Bayesian Inference

\

https://www.nature.com/articles/s41409-021-01473-w
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You're already a Bayesian

SD uses lots of a priori information

— Model structure

— Reference modes

— Dynamic hypotheses

— CLDs

— Parameters sourced from SMEs, literature, other models

e You probably use Bayesian updates

— Adaptive expectations or smoothing
— Kalman filtering

If you have lots of data, the answer is probably the same!

37
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Bayesian System Dynamics

« Bayes Rule: P(A|B) = P(B|A)*P(A)/P(B)

Posterior
P(Params | Data) = P(Data | Params) * P(Params) / P(Data)
‘ Likelihood Prior Ignore
The Answer / \ Purely a function of
New term, the data, not the
“Traditional” expressing beliefs, aramete,rs <o it's
Calibration which you might P /

a constant scaling

regard as data £ ctor

points from other
scales or domains

38
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Priors

No priors = uniform priors

— This is essentially what we've been doing so far

— It's not always a good choice, *but* if you have lots of data, it might not matter.
Non-informative or Maximum Entropy priors

— Contribute as little information as possible, i.e. assume maximum ignorance a priori

— For a scale parameter like a time constant, this is
-LN(param) for positive parameters

— This can be tricky to construct
Informative priors

— If you — or experts or literature — have some opinion about a parameter, you can
use a subjective probability distribution to characterize that

— This can also be tricky

39



Problems with Intuitive Sourcing of Parameters

e Example: price elasticity
e Simple concept, but ...

o Estimates of short and long
term overlap

e Most ignore behavioral
phenomena

e Many short term estimates
are non-robust (implying
explosive economic
response)

https://metasd.com/2019/03/challenges-sourcing-parameters-dynamic-models/

Table 1. Price elasticities of fuel demand reported in the literature,
by average year of observation.

Short term # Long Term

https://doi.org/10.1016/j.tra.2017.06.001
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https://metasd.com/2019/03/challenges-sourcing-parameters-dynamic-models/
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Expressing Priors

e A prioris a lot like a data point!

o If our belief is Normal (Gaussian):

param—- ,
- . 1 }( o _)/‘
e Likelihood = oy 2

— For an MCMC log likelihood ratio, we only need the last term

— U represents our belief about the mean value of the parameter, i.e. best guess
— O represents our belief about the plausible variation; high uncertainty = large o

G{} 9|E how long is a snake

o A L) Images [E News ¢ Shopping [] Videos : More

About 433,000,000 results (1.12 seconds)

“ Most snakes are fairly small animals, approximately 1 m (3.3 ft) in length.

41



Example

e Our model has a view dedicated to
priors

e Most are simple (geometric mean
& standard deviation)

A few operate on composites, like
generation time (combination of
several delays)

e A few express hierarchy: how
much variety of behavior is

plausible across states?

e The prior likelihoods are
additional terms in the payoff

VENTANA
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Confidence Bounds & Credible Intervals

Motivation
— Statistical
o Is an effect significantly different from zero?
o After seeing the data, what do we believe about a parameter?
— Practical
o What does uncertainty imply for policy?
o What data might narrow the bounds?
Computation
— Old way
o Optimize to find the best fit to data
o Explore the payoff surface around the maximum
— New ways
o Bootstrapping (draw samples from the data)
o Markov Chain Monte Carlo (MCMC)

43
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Parameter B

Multidimensional Likelihood

Bad
Bad

As you vary Parameter A

Bad

Bad

Parameter A

44
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Traditional Method: Measure the Ellipse

Parameter B

>
Parameter A

e This may be hard if the likelihood surface is shaped like a banana, or a
hedgehog, or a bag of 10-dimensional jellybeans...

e One-dimensional confidence bounds omit information about the joint
distribution of parameters

45
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Using MCMC to Reveal the Posterior

Posterior
P(Params | Data) = P(Data | Params) * P(Params) / P(Data)
] Likelihood Prior Ignore
We'd like to \
'?”OYV th's Without this term, the posterior isn't a properly-
distribution scaled probability distribution, i.e. it doesn't
in full. integrate to 1. So, we need a way to sample the

posterior that only cares about the re/ative
likelihoods of the data & priors.

46
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MCMC

Basic idea: unleash a random walk on
the likelihood surface

Probability of accepting a proposed
step is proportional to likelihood

Density of the resulting path
converges to the underlying
likelihood

Parameter B

Parameter A

47
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Parameter B

MCMC

Parameter A

48



e A sample of points
describing the joint
distribution of parameters

 Diagnostics

e You can then use this to
generate sensitivity runs
reflecting the sampled
parameters

VENTANA

MCMC Output

1.2

Parameter 2
(en]
()}

MCMC Parameter Sample

0.005

e |nitial Growth Rate

0.01 0.015
Treated Fatality Rate

e Historic Isolation Effectiveness

0.02
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Use the MCMC Sample for Sensitivity Runs

e What does the parameter Total Hospitalized
distribution imply for the *includes excess demand from unconfirmed cases
distributi f behavior? est 20200422 v26 mc.vdfx
IStribution of benavior: 50.0%  75.0% [ 95.0% [} 100.0%
Total In Hospital |

e Does the data lie within the 700

confidence/credible ‘

interval? (Posterior 525

predictive check in Bayes- ‘

speak) 350
o\

2080-03-01 2020-05-31 2020-08-30 2020-11-29 2021-03-01
Date
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What policy performs best under combined uncertainties?

Comparison of Outcomes - Deaths

° I .
SI m ple . every Current Behavior 20200524 v37f e
i Current Behavior + 10k Tests [
runisa Current Behavior + Better Isolation [ e

SenSitivity run Combined Strategy
No Controls .|

Sensivity Histogram
Total Deaths | @ 364

e Fancy: 900
stochastic
olic
p o y_ . 675
optimization
450
225 JI\
0 III Ll I - | I ‘ ‘ n n
0-500 1500-2000 3000-3500 4500-5000 6000-6500 7500-8000
500-1000 2000-2500 3500-4000 5000-5500 6500-7000
1000-1500 2500-3000 4000-4500 5500-6000 7000-7500
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Bottom Line

Jay was wrong! Jay was right!
e Fitting to data doesn’t make e A good model has to come first
the model worse — Appropriate stocks, flows, feedback,
e It's hard to make a sensible nonfinearity |
model fit arbitrary data — Dimensional consistency and material
conservation

NNNNNNN

If you can’t reproduce history,
you have some explaining to do

— Decisions use available information
— Robustness to extreme conditions

Data is an important e Models should reproduce all
information source (not possible realizations of the
sufficient but necessary) data and test policies outside
Intuitive characterizations of the historical range

system behavior or decision  There are opportunity costs to

rules may be wrong intensive use of data .
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Selected References & Resources

Vensim manuals and sample models

Vensim Data & Calibration workshops (ISDC 2022) https://vensim.com/conference/#using-
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