There's just enough time

In response to the question, “is there still time for a transition to sustainability,” John Sterman cited Donella Meadows,

The truth of the matter is that no one knows.

We have said many times that the world faces not a preordained future, but a choice. The choice is between different mental models, which lead logically to different scenarios. One mental model says that this world for all practical purposes has no limits. Choosing that mental model will encourage extractive business as usual and take the human economy even farther beyond the limits. The result will be collapse.

Another mental model says that the limits are real and close, and that there is not enough time, and that people cannot be moderate or responsible or compassionate. At least not in time. That model is self-fulfilling. If the world’s people choose to believe it, they will be proven right. The result will be collapse.

A third mental model says that the limits are real and close and in some cases below our current levels of throughput. But there is just enough time, with no time to waste. There is just enough energy, enough material, enough money, enough environmental resilience, and enough human virtue to bring about a planned reduction in the ecological footprint of humankind: a sustainabil­ity revolution to a much better world for the vast majority.

That third scenario might very well be wrong. But the evidence we have seen, from world data to global computer models, suggests that it could conceivably be made right. There is no way of knowing for sure, other than to try it.

Path Dependence, Competition, and Succession in the Dynamics of Scientific Revolution

This is a very interesting model, both because it tackles ‘soft’ dynamics of paradigm formation in ‘hard’ science, and because it is an aggregate approach to an agent problem. Unfortunately, until now, the model was only available in DYNAMO, which limited access severely. It turns out to be fairly easy to translate to Vensim using the dyn2ven utility, once you know how to map the DYNAMO array FOR loops to Vensim subscripts.

Path Dependence, Competition, and Succession in the Dynamics of Scientific Revolution

J. Wittenberg and J. D. Sterman, 1999

Abstract

What is the relative importance of structural versus contextual forces in the birth and death of scientific theories? We describe a dynamic model of the birth, evolution, and death of scientific paradigms based on Kuhn’s Structure of Scientific Revolutions. The model creates a simulated ecology of interacting paradigms in which the creation of new theories is stochastic and endogenous. The model captures the sociological dynamics of paradigms as they compete against one another for members. Puzzle solving and anomaly recognition are also endogenous. We specify various regression models to examine the role of intrinsic versus contextual factors in determining paradigm success. We find that situational factors attending the birth of a paradigm largely determine its probability of rising to dominance, while the intrinsic explanatory power of a paradigm is only weakly related to the likelihood of success. For those paradigms that do survive the emergence phase, greater explanatory power is significantly related to longevity. However, the relationship between a paradigm’s ‘strength’ and the duration of normal science is also contingent on the competitive environment during the emergence phase. Analysis of the model shows the dynamics of competition and succession among paradigms to be conditioned by many positive feedback loops. These self-reinforcing processes amplify intrinsically unobservable micro-level perturbations in the environment – the local conditions of science, society, and self faced by the creators of a new theory – until they reach macroscopic significance. Such dynamics are the hallmark of self-organizing evolutionary systems.

We consider the implications of these results for the rise and fall of new ideas in contexts outside the natural sciences such as management fads.

Cite as: J. Wittenberg and J. D. Sterman (1999) Path Dependence, Competition, and Succession in the Dynamics of Scientific Revolution. Organization Science, 10.

I believe that this version is faithful to the original, but it’s difficult to be sure because the model is stochastic, so the results differ due to differences in the random number streams. For the moment, this model should be regarded as a beta release.

Continue reading “Path Dependence, Competition, and Succession in the Dynamics of Scientific Revolution”