Limits to Growth Redux

Every couple of years, an article comes out reviewing the performance of the World3 model against data, or constructing an alternative, extended model based on World3. Here’s the latest:

Abstract
This study investigates the notion of limits to socioeconomic growth with a specific focus on the role of climate change and the declining quality of fossil fuel reserves. A new system dynamics model has been created. The World Energy Model (WEM) is based on the World3 model (The Limits to Growth, Meadows et al., 2004) with climate change and energy production replacing generic pollution and resources factors. WEM also tracks global population, food production and industrial output out to the year 2100. This paper presents a series of WEM’s projections; each of which represent broad sweeps of what the future may bring. All scenarios project that global industrial output will continue growing until 2100. Scenarios based on current energy trends lead to a 50% increase in the average cost of energy production and 2.4–2.7 °C of global warming by 2100. WEM projects that limiting global warming to 2 °C will reduce the industrial output growth rate by 0.1–0.2%. However, WEM also plots industrial decline by 2150 for cases of uncontrolled climate change or increased population growth. The general behaviour of WEM is far more stable than World3 but its results still support the call for a managed decline in society’s ecological footprint.

The new paper puts economic collapse about a century later than it occurred in Limits. But that presumes that the phrase highlighted above is a legitimate simplification: GHGs are the only pollutant, and energy the only resource, that matters. Are we really past the point of concern over PCBs, heavy metals, etc., with all future chemical and genetic technologies free of risk? Well, maybe … (Note that climate integrated assessment models generally indulge in the same assumption.)

But quibbling over dates is to miss a key point of Limits to Growth: the model, and the book, are not about point prediction of collapse in year 20xx. The central message is about a persistent overshoot behavior mode in a system with long delays and finite boundaries, when driven by exponential growth.

We have deliberately omitted the vertical scales and we have made the horizontal time scale somewhat vague because we want to emphasize the general behavior modes of these computer outputs, not the numerical values, which are only approximately known.

Leave a Reply

Your email address will not be published. Required fields are marked *

− 1 = 1

This site uses Akismet to reduce spam. Learn how your comment data is processed.