Stress, Burnout & Biology

In my last post, stress takes center stage as both a driver and an outcome of the cortisol-cytokine-serotonin system. But stress can arise endogenously in another way as well, from the interplay of personal goals and work performance. Jack Homer’s burnout model is a system dynamics classic that everyone should explore:

Worker burnout: A dynamic model with implications for prevention and control

Jack B. Homer

This paper explores the dynamics of worker burnout, a process in which a hard‐working individual becomes increasingly exhausted, frustrated, and unproductive. The author’s own two‐year experience with repeated cycles of burnout is qualitatively reproduced by a small system dynamics model that portrays the underlying psychology of workaholism. Model tests demonstrate that the limit cycle seen in the base run can be stabilized through techniques that diminish work‐related stress or enhance relaxation. These stabilizing techniques also serve to raise overall productivity, since they support a higher level of energy and more working hours on the average. One important policy lever is the maximum workweek or work limit; an optimal work limit at which overall productivity is at its peak is shown to exist within a region of stability where burnout is avoided. The paper concludes with a strategy for preventing burnout, which emphasizes the individual’s responsibility for understanding the self‐inflicted nature of this problem and pursuing an effective course of stability.

You can find a copy of the model in the help system that comes with Vensim.

1 thought on “Stress, Burnout & Biology”

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.