Dynamic Drinking

Via ScienceDaily,

A large body of social science research has established that students tend to overestimate the amount of alcohol that their peers consume. This overestimation causes many to have misguided views about whether their own behaviour is normal and may contribute to the 1.8 million alcohol related deaths every year. Social norms interventions that provide feedback about own and peer drinking behaviours may help to address these misconceptions.

Erling Moxnes has looked at this problem from a dynamic perspective, in Moxnes, E. and L. C. Jensen (in press). “Drunker than intended; misperceptions and information treatments.” Drug and Alcohol Dependence. From an earlier Athens SD conference paper,

Overshooting alcohol intoxication, an experimental study of one cause and two cures

Juveniles becoming overly intoxicated by alcohol is a widespread problem with consequences ranging from hangovers to deaths. Information campaigns to reduce this problem have not been very successful. Here we use a laboratory experiment with high school students to test the hypothesis that overshooting intoxication can follow from a misperception of the delay in alcohol absorption caused by the stomach. Using simulators with a short and a long delay, we find that the longer delay causes a severe overshoot in the blood alcohol concentration. Behaviour is well explained by a simple feedback strategy. Verbal information about the delay does not lead to a significant reduction of the overshoot, while a pre test mouse-simulator experience removes the overshoot. The latter policy helps juveniles lessen undesired consequences of drinking while preserving the perceived positive effects. The next step should be an investigation of simulator experience on real drinking behaviour.

Washboard Evolution

Via ScienceDaily,

Just about any road with a loose surface ’” sand or gravel or snow ’” develops ripples that make driving a very shaky experience. A team of physicists from Canada, France and the United Kingdom have recreated this “washboard” phenomenon in the lab with surprising results: ripples appear even when the springy suspension of the car and the rolling shape of the wheel are eliminated. The discovery may smooth the way to designing improved suspension systems that eliminate the bumpy ride.

“The hopping of the wheel over the ripples turns out to be mathematically similar to skipping a stone over water,” says University of Toronto physicist, Stephen Morris, a member of the research team.

“To understand the washboard road effect, we tried to find the simplest instance of it, he explains. We built lab experiments in which we replaced the wheel with a suspension rolling over a road with a simple inclined plow blade, without any spring or suspension, dragging over a bed of dry sand. Ripples appear when the plow moves above a certain threshold speed.”

“We analyzed this threshold speed theoretically and found a connection to the physics of stone skipping. A skipping stone needs to go above a specific speed in order to develop enough force to be thrown off the surface of the water. A washboarding plow is quite similar; the main difference is that the sandy surface “remembers” its shape on later passes of the blade, amplifying the effect.”