The Dynamics of Initiative Success

This is a new replication of a classic model, for the library. The model began in Nelson Repenning’s thesis, and was later published in Organization Science:

A Simulation-Based Approach to Understanding the Dynamics of Innovation Implementation

The history of management practice is filled with innovations that failed to live up to the promise suggested by their early success. A paradox currently facing organizational theory is that the failure of these innovations often cannot be attributed to an intrinsic lack of efficacy. To resolve this paradox, in this paper I study the process of innovation implementation. Working from existing theoretical frameworks, I synthesize a model that describes the process through which participants in an organization develop commitment to using a newly adopted innovation. I then translate that framework into a formal model and analyze it using computer simulation. The analysis suggests three new constructs—reversion, regeneration, and the motivation threshold—characterizing the dynamics of implementation. Taken together, the constructs provide an internally consistent theory of how seemingly rational decision rules can create the apparent paradox of innovations that generate early results but fail to produce sustained benefit.

An earlier version is online here.

This is another nice example of tipping points. In this case, an initiative must demonstrate enough early success to grow its support base. If it succeeds, word of mouth takes its commitment level to 100%. If not, the positive feedbacks run as vicious cycles, and the initiative fails.

When initiatives compete for scarce resources, this creates a success to the successful dynamic, in which an an initiative that demonstrates early success attracts more support, grows commitment faster, and thereby demonstrates more success.

This version is in Ventity, in order to make it easier to handle multiple competing initiatives, with each as a discrete entity. One initialization dataset for the model creates initiatives at random intervals, with success contingent on the environment (other initiatives) prevailing at the time of launch:

This archive contains two versions of the model: “Intervention2” is the first in the paper, with no resource competition. “Intervention5” is the second, with multiple competing initiatives.

Innovation2+5.zip

A Dynamic Synthesis of Basic Macroeconomic Theory

Model Name: A Dynamic Synthesis of Basic Macroeconomic Theory

Citation: Forrester, N.B. (1982) A Dynamic Synthesis of Basic Macroeconomic Theory: Implications for Stabilization Policy Analysis. PhD Dissertation, MIT Sloan School of Management.

Source: Provided by Nathan Forrester

Units balance: Yes, with 3 exceptions, evidently from the original publication

Format: Vensim

Notes: I mention this model in this article

A Dynamic Synthesis of Basic Macroeconomic Theory (Vensim .vpm)

Update: a newer version with improved diagrams and a control panel, plus changes files for a series of experiments with responses to negative demand shocks:

Download NFDis+TF-3.vpm or NFDis+TF-3.zip

The model runs in Vensim PLE, but you’ll need an advanced version to use the .cin and .cmd files included.

Economic Cycles: Underlying Causes

Nathaniel Mass’ model of economic cycles, replicated from his 1975 book, Economic Cycles: An Analysis of Underlying Causes, which unfortunately seems to have disappeared from the Productivity Press site (though you can still find used copies).

I haven’t checked, but I’m guessing that the model is quite similar to that in his PhD thesis, which you can get from MIT libraries here. Here’s the abstract:


The models: mass2.mdl mass2.vpm

These don’t have units defined, unfortunately – I’d love to have a copy with units if you’re so inclined.

The Dynamics of Commodity Production Cycles

These classic models are from Dennis Meadows’ dissertation, the Dynamics of Commodity Production Cycles:

While times have changed, the dynamics described by these models are still widespread.

These versions should work in all recent Vensim versions:

DLMhogs2.vpm DLMhogs2.mdl

DLMgeneric2.vpm DLMgeneric2.mdl

 

Oscillation from a purely positive loop

Replicated by Mohammad Mojtahedzadeh from Alan Graham’s thesis, or created anew with the same inspiration. He created these models in the course of his thesis work on structural analysis through pathway participation matrices.

Alan Graham, 1977. Principles on the Relationship Between Structure and Behavior of Dynamic Systems. MIT Thesis. Page 76+

These models are pure positive feedback loops that don’t exhibit exponential growth (under the right initial conditions). See my blog post for a discussion of the details.

These are generic models, and therefore don’t have units. All should run with Vensim PLE, except the generic gain matrix version which uses arrays and therefore requires an advanced version or the Model Reader.

The original 4th order model, replicated from Alan’s thesis: PurePosOscill4.vpm – note that this includes a .cin file with an alternate stable initialization.

My slightly modified version, permitting initialization with different gains at each level: PurePosOscill4alt.vpm

Loops of different orders: 3.vpm 6.vpm 8.vpm 12.vpm (I haven’t spent much time with these. It appears that the high-order versions transition to growth rather quickly – my guess is that this is an artifact of numerical precision, i.e. any tiny imprecision in the initialization introduces a bit of the growth eigenvector, which quickly swamps the oscillatory signal. It would be interesting to try these in double precision Vensim to see if I’m right.)

Stable initializations: 2stab.vpm 12stab.vpm

A generic version, representing a system as a generic gain matrix, so you can use it to explore any linear unforced variant: Generic.vpm

The Energy Transition and the Economy

Model Name: The Energy Transition and the Economy: A System Dynamics Approach

Citation: John D. Sterman, 1981. PhD Dissertation, MIT Sloan School of Management

Source: Replicated by Miguel Vukelic (a heroic effort)

Units balance: Yes

Format: Vensim (Contains data variables and thus requires an advanced version or the free Model Reader)

The Energy Transition and the Economy (Vensim .vpm)

Terrorism Dynamics

Contributed by Bruce Skarin

Introduction

This model is the product of my Major Qualifying Project (MQP) for my Bachelors degree in the field of system dynamics at Worcester Polytechnic Institute. There were two goals to this project:

1) To develop a model that reasonably simulates the historic attacks by the al-Qaida terrorist network against the United States.

2) To evaluate the usefulness of the model for developing public understanding of the terrorism problem.

The full model and report are available on my website.

Reference Mode

The reference mode for this model was the escalation of attacks linked to al-Qaida against the U.S., as shown below. The data for this chart is available through this Google Document.
Image:Terrorism_Reference_Mode.jpg

Causal View of the Model

Below is the causal diagram of the primary feedback loops in the model.

Image:Terrorism_Causal_Loop.png

Online Story Model

There is an online story version that explains the primary model structure as well as complete iThink and Vensim models on my MQP page.