Detecting the inconsistency of BS

DARPA put out a request for a BS detector for science. I responded with a strategy for combining the results of multiple models (using Mohammad Jalali’s multivariate meta-analysis with some supporting infrastructure like data archiving) to establish whether new findings are consistent with an existing body of knowledge.

DARPA didn’t bite. I have no idea why, but could speculate from the RFC that they had in mind something more like a big data approach that would use text analysis to evaluate claims. Hopefully not, because a text-only approach will have limited power. Here’s why.

Continue reading “Detecting the inconsistency of BS”


The word “quizzaciously” was literally absent from the web until Vsauce mentioned it in this cool video on Zipf’s law.

Google Trends reflects this. The week of the video’s release, there was a huge spike in interest, followed by a rapid decay, not all the way to zero, but to a slow simmer of interest.

The video discusses power laws as a model of memory. So … has the internet remembered the video according to a power law? Not exactly, but it certainly has a hint of one:

My guess is that the trajectory is modified by word-of-mouth processes that create sustained interest.

Thyroid Dynamics

Quite a while back, I posted about the dynamics of the thyroid and its interactions with other systems.

That was a conceptual model; this is a mathematical model. This is a Vensim replication of:

Marisa Eisenberg, Mary Samuels, and Joseph J. DiStefano III

Extensions, Validation, and Clinical Applications of a Feedback Control System Simulator of the Hypothalamo-Pituitary-Thyroid Axis

Background:We upgraded our recent feedback control system (FBCS) simulation model of human thyroid hormone (TH) regulation to include explicit representation of hypothalamic and pituitary dynamics, and up-dated TH distribution and elimination (D&E) parameters. This new model greatly expands the range of clinical and basic science scenarios explorable by computer simulation.

Methods: We quantified the model from pharmacokinetic (PK) and physiological human data and validated it comparatively against several independent clinical data sets. We then explored three contemporary clinical issues with the new model: …

… These results highlight how highly nonlinear feedback in the hypothalamic-pituitary-thyroid axis acts to maintain normal hormone levels, even with severely reduced TSH secretion.

Volume 18, Number 10, 2008
DOI: 10.1089=thy.2007.0388

This version is a superset of the authors’ earlier 2006 model, and closely reproduces that with a few parameter changes.

L-T4 Bioequivalence and Hormone Replacement Studies via Feedback Control Simulations

Volume 16, Number 12, 2006

The model is used in:

TSH-Based Protocol, Tablet Instability, and Absorption Effects on L-T4 Bioequivalence

Volume 19, Number 2, 2009
DOI: 10.1089=thy.2008.0148

This works with any Vensim version:

thyroid 2008 d.mdl

thyroid 2008 d.vpm

Discrete Time Stinks

Discrete time modeling is often convenient, occasionally right and frequently treacherous.

You often see models expressed in discrete time, like
Samuelson's multiplier-accelerator
That’s Samuelson’s multiplier-accelerator model. The same notation is ubiquitous in statistics, economics, ABM and many other areas.

Samuelson multiplier-accelerator schematic

So, what’s the problem?

  1. Most of the real world does not happen in discrete time. A few decisions, like electric power auctions, happen at regular intervals, but those are the exception. Most of the time we’re modeling on long time scales relative to underlying phenomena, and we have lots of heterogeneous agents or particles or whatever, with diverse delays and decision intervals.
  2. Discrete time can be artificially unstable. A stable continuous system can be made unstable by simulating at too large a discrete interval. A discrete system may oscillate, where its continuous equivalent would not.
  3. You can’t easily test for the effect of the time time step on stability. Q: If your discrete time model is running with one Excel row per interval, how will you test an interval that’s 1/2 or 1/12 as big for comparison? A: You won’t. Even if it occurs to you to try, it would be too much of a pain.
  4. The measurement interval isn’t necessarily the relevant dynamic time scale. Often the time step of a discrete model derives from the measurement interval in the data. There’s nothing magic about that interval, with respect to how the system actually works.
  5. The notions of stocks and flows and system state are obscured. (See the diagram from the Samuelson model above.) Lack of stock flow consistency can lead to other problems, like failure to conserve physical quantities.
  6. Units are ambiguous. This is a consequence of #5. When states and their rates of change appear on an equal footing in an equation, it’s hard to work out what’s what. Discrete models tend to be littered with implicit time constants and other hidden parameters.
  7. Most delays aren’t discrete. In the Samuelson model, output depends on last year’s output. But why not last week’s, or last century’s? And why should a delay consist of precisely 3 periods, rather than be distributed over time? (This critique applies to some Delay Differential Equations, too.)
  8. Most logic isn’t discrete. When time is marching along merrily in discrete lockstep, it’s easy to get suckered into discrete thinking: “if the price of corn is lower than last year’s price of corn, buy hogs.” That might be a good model of one farmer, but it lacks nuance, and surely doesn’t represent the aggregate of diverse farmers. This is not a fault of discrete time per se, but the two often go hand in hand. (This is one of many flaws in the famous Levinthal & March model.)

Certainly, there are cases that require a discrete time simulation (here’s a nice chapter on analysis of such systems). But most of the time, a continuous approach is a better starting point, as Jay Forrester wrote 50 years ago. The best approach is sometimes a hybrid, with an undercurrent of continuous time for the “physics” of the model, but with measurement processes represented by explicit sampling at discrete intervals.

So, what if you find a skanky discrete time model in your analytic sock drawer? Fear not, you can convert it.

Consider the adstock model, representing the cumulative effects of advertising:

Ad Effect = f(Adstock)
Adstock(t) = Advertising(t) + k*Adstock(t-1)

Notice that k is related to the lifetime of advertising, but because it’s relative to the discrete interval, it’s misleadingly dimensionless. Also, the interval is fixed at 1 time unit, and can’t be changed without scaling k.

Also notice that the ad effect has an instantaneous component. Usually there’s some delay between ad exposure and action. That delay might be negligible in some cases, like in-app purchases, but it’s typically not negligible for in-store behavior.

You can translate this into Vensim lingo literally by using a discrete delay:

Adstock = Advertising + k*Previous Adstock ~ GRPs
Previous Adstock = DELAY FIXED( Adstock, Ad Life, 0 ) ~ GRPs
Ad life = ... ~ weeks

That’s functional, but it’s not much of an improvement. Much better is to recognize that Adstock is (surprise!) a stock that changes over time:

Ad Effect = f(Adstock) ~ dimensionless
Adstock = INTEG( Advertising - Forgetting, 0 ) ~ GRPs
Advertising = ... ~ GRPs/week
Forgetting = Adstock / Ad Life ~ GRPs/week
Ad Life = ... ~ weeks

Now the ad life has a dimensioned real-world interpretation and you can simulate with whatever time step you need, independent of the parameters (as long as it’s small enough).

There’s one fly in the ointment: the instantaneous ad effect I mentioned above. That happens when, for example, the data interval is weekly, and ads released have some effect within their week of release – the Monday sales flyer drives weekend sales, for example.

There are two solutions for this:

  • The “cheat” is to include a bit of the current flow of advertising in the effective adstock, via a “current week effect” parameter. This is a little tricky, because it locks you into the weekly time step. You can generalize that away at the cost of more complexity in the equations.
  • A more fundamental solution is to run the model at a finer time step than the data interval. This gives you a cleaner model, and you lose nothing with respect to calibration (in Vensim/Ventity at least).

Occasionally, you’ll run into more than one delayed state on the right side of the equation, as with the inclusion of Y(t-1) and Y(t-2) in the Samuelson model (top). That generally signals either a delay with a complex structure (e.g., 2nd or higher order), or some other higher-order effect. Generally, you should be able to give a name and interpretation to these states (as with the construction of Y and C in the Samuelson model). If you can’t, don’t pull your hair out. It could be that the original is ill-formulated. Instead, think things through from scratch with stocks and flows in mind.

The Dynamics of Initiative Success

This is a new replication of a classic model, for the library. The model began in Nelson Repenning’s thesis, and was later published in Organization Science:

A Simulation-Based Approach to Understanding the Dynamics of Innovation Implementation

The history of management practice is filled with innovations that failed to live up to the promise suggested by their early success. A paradox currently facing organizational theory is that the failure of these innovations often cannot be attributed to an intrinsic lack of efficacy. To resolve this paradox, in this paper I study the process of innovation implementation. Working from existing theoretical frameworks, I synthesize a model that describes the process through which participants in an organization develop commitment to using a newly adopted innovation. I then translate that framework into a formal model and analyze it using computer simulation. The analysis suggests three new constructs—reversion, regeneration, and the motivation threshold—characterizing the dynamics of implementation. Taken together, the constructs provide an internally consistent theory of how seemingly rational decision rules can create the apparent paradox of innovations that generate early results but fail to produce sustained benefit.

An earlier version is online here.

This is another nice example of tipping points. In this case, an initiative must demonstrate enough early success to grow its support base. If it succeeds, word of mouth takes its commitment level to 100%. If not, the positive feedbacks run as vicious cycles, and the initiative fails.

When initiatives compete for scarce resources, this creates a success to the successful dynamic, in which an an initiative that demonstrates early success attracts more support, grows commitment faster, and thereby demonstrates more success.

This version is in Ventity, in order to make it easier to handle multiple competing initiatives, with each as a discrete entity. One initialization dataset for the model creates initiatives at random intervals, with success contingent on the environment (other initiatives) prevailing at the time of launch:

This archive contains two versions of the model: “Intervention2” is the first in the paper, with no resource competition. “Intervention5” is the second, with multiple competing initiatives.