This is a replication of William Nordhaus’ original DICE model, as described in Managing the Global Commons and a 1992 Science article and Cowles Foundation working paper that preceded it.

There are many good things about this model, but also some bad. If you are thinking of using it as a platform for expansion, read my dissertation first.

Units balance.

I provide several versions:

  1. Model with simple heuristics replacing the time-vector decisions in the original; runs in Vensim PLE
  2. Full model, with decisions implemented as vectors of points over time; requires Vensim Pro or DSS
  3. Same as #2, but with VECTOR LOOKUP replaced with VECTOR ELM MAP; supports earlier versions of Pro or DSS
    • DICE-vec-6-elm.mdl (you’ll also want a copy of DICE-vec-6.vpm above, so that you can extract the supporting optimization control files)

Note that there may be minor variances from the published versions, e.g. that transversality coefficients for the state variables (i.e. terminal values of the states for optimization) are not included. The optimizations use fewer time decision points than the original GAMS equivalents. These do not have any significant effect on the outcome.


This is the latest instance of the WORLD3 model, as in Limits to Growth – the 30 year update, from the standard Vensim distribution. It’s not much changed from the 1972 original used in Limits to Growth, which is documented in great detail in Dynamics of Growth in a Finite World (half off at Pegasus as of this moment).

There have been many critiques of this model, including the fairly famous Models of Doom. Most are ideological screeds that miss the point, and many modern critics do not appear to even have read the book. The only good, comprehensive technical critique of World3 that I’m aware of is Wil Thissen’s thesis, Investigations into the Club of Rome’s WORLD3 model: lessons for understanding complicated models (Eindhoven, 1978). Portions appeared in IEEE Transactions.

My take on the more sensible critiques is that they show two things:

  • WORLD3 is an imperfect expression of the underlying ideas in Limits to Growth.
  • WORLD3 doesn’t have the policy space to capture competing viewpoints about the global situation; in particular it does not represent markets and technology as many see them.

It doesn’t necessarily follow from those facts that the underlying ideas of Limits are wrong. We still have to grapple with the consequences of exponential growth confronting finite planetary boundaries with long perception and action delays.

I’ve written some other material on limits here.

Files: WORLD3-03 (zipped archive of Vensim models and constant changes)

Payments for Environmental Services

From ModelWiki

Jump to: navigation, search

Model Name: payments, penalties, and environmental ethic

Citation: Dudley, R. 2007. Payments, penalties, payouts, and environmental ethics: a system dynamics examination Sustainability: Science, Practice, & Policy 3(2):24-35. http://ejournal.nbii.org/archives/vol3iss2/0706-013.dudley.html.

Source: Richard G. Dudley

Copyright: Richard G. Dudley (2007)

License: Gnu GPL

Peer reviewed: Yes (probably when submitted for publication?)

Units balance: Yes

Format: Vensim

Target audience: People interested in the concept of payments for environmental services as a means of improving land use and conservation of natural resources.

Questions answered: How might land users’ environmental ethic be influenced by, and influence, payments for environmental services.

Software: Vensim



Models in the Special Issue of the System Dynamics Review on Environmental and Resource Systems

Models in the Special Issue of the System Dynamics Review on Environmental and Resource Systems, Andrew Ford & Robert Cavana, Editors. System Dynamics Review, Volume 20, Number 2, Summer of 2004.

  • Modeling the Effects of a Log Export Ban in Indonesia by Richard G. Dudley
  • The Dynamics of Water Scarcity in Irrigated Landscapes: Mazarron and Aguilas in South-eastern Spain by Julia Martinez Fernandez & Angel Esteve Selma
  • Misperceptions of Basic Dynamics: The Case of Renewable Resource Management by Erling Moxnes
  • Models for Management of Wildlife Populations: Lessons from Spectacle Bears in Zoos and Gizzly Bears in Yellowstone by Lisa Faust, Rosemary Jackson, Andrew Ford, Joanne Earnhardt and Steven Thompson
  • Modeling a Blue-Green Algae Bloom by Steven Arquitt & Ron Johnstone

See the following web site for article summaries and downloadable models described in this special issue:  http://www.wsu.edu/~forda/SIOpen.html

Submitted by Richard Dudley, 23 April 2008

Lorenz Attractor

This is an implementation of Lorenz’ groundbreaking model that exhibits continuous-time chaos.

A google search turns up lots of good information on this model. For more advanced material, try google scholar.

I didn’t replicate this from Lorenz’ original 1963 article, Deterministic Nonperiodic Flow, but you can find a copy here.




World3 Population Sector

Population sector extracted from the World3 model.

Documented in Dynamics of Growth in a Finite World, by Dennis L. Meadows, William W. Behrens III, Donella H. Meadows, Roger F. Naill, Jorgen Randers, and Erich K.O. Zahn. 1974 ISBN 0-9600294-4-3 . See also Limits to Growth, The 30-Year Update, by Dennis Meadows and Eric Tapley. ISBN 1-931498-85-7 .

See my article at The other bathtubs – population

World3-Population (Vensim .vpm)

World3-Population (Vensim .mdl)

World3-Population (Vensim .vmf)

Ultradian Oscillations of Insulin and Glucose

Citation: Jeppe Sturis, Kenneth S. Polonsky, Erik Mokilde, and Eve van Cauter. Computer Model for Mechanisms Underlying Ultradian Oscillations of Insulin and Glucose. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E801-E809, 1991.

Source: Replicated by Hank Taylor

Units: No Yes!

Format: Vensim

Ultradian Oscillations of Insulin and Glucose (Vensim .vpm)

Update, 10/2017:

Refreshed, with units defined (mathematically the same as before): ultradia2.vpm ultradia2.mdl

Further refined, for initialization in equilibrium (insulin by analytic expression; glucose by parameter). Glucose infusion turned on by default. Graphs added.

ultradia-enhanced-3.mdl ultradia-enhanced-3.vpm

Sea Level Rise

Citations: Rahmstorf 2007, “A semi-empirical approach to projecting future sea level rise.” Science 315. Grinsted, Moore & Jevrejeva 2009. “Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD.” Climate Dynamics [1]

Source: Replicated by Tom Fiddaman based on an earlier replication of Rahmstorf provided by John Sterman

Units balance: Yes

Format: Vensim; requires Model Reader or an advanced version

Notes: See discussion at metasd.


Grinsted_v3b‎ – first model; default calibration replicates Rahmstorf, and optimization is set up to adjust constant terms to fit Rahmstorf slope to data

Grinsted_v3c – second model; updated data and calibration, as in Part III

Grinsted_v3c-k2 – third model; set up for Kalman filtering, as in Part V