6 more reasons to apply SD to medical research

@SDWisdom Ken Cooper lists 6 good reasons to apply System Dynamics to medical research. I think there are more if you broaden the definition of ‘medical’ :

7. Dose titration can be dynamically complex and subject to misperceptions of feedback; models make it easy.

8. Chronic autoimmune and mental health problems are embedded in a nest of feedback between the disease and the person’s environment.

9. ERs, hospitals and other delivery systems are loaded with delays, feedback and nonlinearity.

10. Smoking, diet, exercise, and other big health drivers are social phenomena.

11. Diet and exercise are entangled with other systems, like urban design and energy efficiency.

12. The health insurance system, especially in the US where it has evolved into a mess, can’t be redesigned without a systemic perspective.

4 Faces of Medical Modeling

I enjoyed the biomedical modeling plenary at #ISDC2019 more than most. I was struck by the continuum of behavior involved in the system:

  • True biomedical modeling is a bit funny, because it’s not typical System Dynamics, in the sense that it’s nonlinear dynamic simulation, but it’s not behavioral, so it’s missing one of the cornerstones of SD. Nevertheless, I think the way we think about complex systems is a useful complement to other approaches coming more from biology and mathematics (nonlinear dynamics).
  • Behavior enters one level “up”, in problems like Jim Rogers & Ed Gallaher’s work on dose titration in anemia. This is a classic case of smart people having trouble managing a system with fairly simple dynamics – essentially a single pipeline delay in the case of anemia. There may be many similar cases, where large performance improvements are available from simple models (but complicated people management).
  • Next, there are problems that combine behavioral dynamics and misperceptions of feedback with an underlying system that is also quite complex. Gizem Aktas’ work on stress and hormonal regulation is an example, as are diabetes and mental health models.
  • At the far end of the scale, there are health system models, like ReThink Health, which abstract away from the biomedical details of any particular disease. In its place, there’s an extremely complex network of human resources, incentives and decisions.

I think the opportunities are large in all of these areas. Once challenge for the field is that each requires a different interface to other researchers, health practitioners and managers. That’s a lot for relatively few modelers to manage. How can we team up to be more effective?

Closing loops – practicalities

Hybrid models are the solution to blending endogenous elegance with practicality.

My last post probably sounds like I disagree with Jack Homer’s recommendation to tolerate some exogenous drivers and consideration of policy feasibility. Actually I don’t. In fact, we at Ventana probably do more data-intensive SD than anyone. I build hybrid models all the time.

When philosophizing about the best way to change the world, it’s easy to lose sight of some practical considerations that influence choices:

  • Cost. It’s expensive to develop an elegant, endogenous theory for things like interest rates that you might normally think of as exogenous to a firm. On the other hand, it’s also expensive to collect and use data – often 1/3 of project cost in our experience.
  • Clarity. Exogenous variables complicate the analysis of a model, because you have driven behavior on top of the model’s endogenous dynamics. I think this makes it harder to understand the basic behavior, because you lose the insight you might gain from starting a model in equilibrium and perturbing it with policies.
  • Calibration. On the other hand, using exogenous drivers increases your ability to gain insight from comparison of model behavior to data. This is not a definitive test, but you can definitely use it to estimate uncertain parameters and weed out certain dumb ideas.
  • Client. You have to meet people where they are. If, historically, they think R^2 is the definitive measure of success, you’d better deliver. You can explain why that’s a bad metric and present a more endogenous view of the situation later, after you’ve established trust.

I think there’s no clear answer – the extent to which endogenous or exogenous elements are preferred has to be a situation-specific decision. In my own work, I often use a two-pronged approach, and two ways to structure that have emerged:

  • Build a single, large, calibrated model with some exogenous drivers. Build endogenous submodels or metamodels for equilibrium experiments and to  explain key features of the big model.
  • Build a single, elegant endogenous model, with few drivers. Use smaller exogenous models, or statistical and machine learning tools, to understand local features of the data, incorporating those insights into the endogenous model without using the data directly.

Closing the loops

How do we strike the right balance among closed loops revealing all possible leverage points, exogenous drivers for fidelity and economy, and practical focus on feasible policies?

On the SDwisdom blog, Jack Homer wonders whether we should be a little less endogenous:

The party line is that a model’s boundary should be broad enough so that the system’s main observed behaviors—such as S-shaped growth, oscillation, or overshoot and decline—are fully explained by the model’s endogenous structure.  One should avoid the use of exogenous time series drivers, because they undermine the ability of the model to explain and to anticipate change.

I mostly agree with this view but want to offer a friendly amendment here.  In my experience with real-world clients, I have often encountered situations in which it makes sense to employ exogenous time series for the sake of completeness and realism.

My experience suggests that we should be less doctrinaire about the endogenous perspective and understand that “endogenous” is a relative thing.  No model can be all-encompassing and explain all observed behavior patterns.  That’s why we define a model relative to some subset of behaviors also known as the dynamic problem.  As long as the model adequately addresses the dynamic problem, it shouldn’t really matter if the model has some exogenous time series included to improve the model’s realism.

The counterpoint to this might be George Richardson’s excellent article on the value of an endogenous perspective:

But the foundation of systems thinking and system dynamics lies deeper than these and is often implicit or even ignored: it is the “endogenous point of view.” The paper will begin with historical background, clarify the endogenous point of view, illustrate with examples, and argue that the endogenous point of view is the sine%qua%non of systems approaches.

The dead buffalo model on the left in Richardson’s figure is perhaps too extreme. I think what Homer is really arguing for is a middle road that might look like this:

In other words, it’s a hybrid model, with an endogenous core, and a few exogenous drivers from beyond the model boundary. For a firm, this might mean that we model the interactions of marketing, production, human resources, etc. endogenously. But we leave the world crude price and GDP of France exogenous, because we have no plausible means to influence them.

Richardson points out, in the context of Urban Dynamics:

How might thinking exogenously have affected conclusions emerging from these urban models? Consider just one: suppose, as a number of critics of various system dynamics studies have suggested, we chose to use time series data for urban population projections. Suppose the data-based projections were very carefully developed by sophisticated statistical tools and econometric methods, and suppose those projections were fed into URBAN1 in place of the endogenous stock of population. To make the implications easiest to see, let’s suppose the base run of the model looks just as it did in Figure 5b. What would Figure 5c look like? Sadly, population would not show a bump as it did in 5c because the sophisticated exogenous time series data would not be influenced in the slightest by the changing conditions in the model. We would not see the compensating urban migration effects we see in Figure 5c, and we would miss the crucial conclusion that population and business construction dynamics would naturally compensate for the jobs program. We’d probably think it was a long term policy success, and we would be dramatically wrong.

Similarly, a key part of my dissertation critique of the DICE model was the idea that its exogenous representation of technology excluded a set competitive dynamics between fossil fuels and renewables that are crucial to understanding climate policy. In both cases, leaving even a few loops exogenous might dramatically alter policy recommendations.

In another article, Homer rejoins:

In 1977, my teacher, SD pioneer Ed Roberts, wrote an important paper called “Strategies for Effective Implementation of Complex Corporate Models”, based on his years of consulting experience.  When it comes to policy recommendations, he said, “the organizations’ ability to absorb the associated change must be assessed…The model-builder and the organization both profit from implementation of moderate change proposals leading to some successful results; both lose from grandiose plans which fail to be moved ahead.”

Without too much extra effort beyond what we already do in modeling, we could assess policy feasibility by studying the political situation and its dynamics, looking at trends in public opinion surveys and other indicator data, and talking to experts. We could then calculate the “feasibility-adjusted value” of a policy by multiplying its potential impact (as determined by our SD model) by its likelihood of enactment.

In other words, one might ask, what good is it to know the nature of the best endogenous policy if the key leverage points are beyond your control? Or, as economists put it, what good are first-best policies in a second-best world?

I think Richardson might respond along the lines of Pascal’s wager:

To the extent that we accept some exogeneity in our models, we accept our fate in the lower left box. That choice presumes that our best strategy is to do a good job of predicting and preparing – making the best of a bad situation, or living to fight another day. Is that really a good idea – can we know, or at least make a good guess, whether the true state of affairs is exogenous or endogenous? Richardson argues that if we don’t know which box we’re in, it’s best to choose the endogenous approach:

If one were to recast Table 4 as a decision tree, the decision to take an endogenous point of view in all circumstances would have the highest net payoff, at least in terms of happy faces and the real feelings they represent. An endogenous point of view is potentially empowering, and that feels good to us.

If the right (endogenous) side of the diagram is better in some sense, we should ask a more important question: can we change the state of affairs, so that we can move from the left quadrants to the right? This is related to the idea that we might need to change paradigms to change the system.

This perspective is especially critical for problems like climate change, where the space of politically feasible policies currently does not include anything that actually solves the problem. Treating the infeasible loops as exogenous drivers won’t help. We need to ask, what loops that are now beyond our control can be activated in order to reach a more attractive solution?

Maybe there really is no good solution to climate and other Limits problems. Then perhaps it would be optimal in some sense to take catastrophe as exogenous and use models to plan a personal path through the eye of the storm. Personally, I’m not ready to accept that. My modeling objective remains to die with my boots on tackling the biggest problems.

See also:

Closing loops – practicalities

Why the World Loves Open Loop Models

What kind of model should I use?

Why the World Loves Open Loop Models

Propaganda, for one thing.

A while back I made a video about spreadsheets, that makes some points about open-loop models vs. real, closed-loop dynamic models:

The short version is that people tend to build this:

when reality works like this:

I think there are some understandable reasons to prefer the first, simpler view:

  • Just understanding the dynamics of accumulation (here, the vehicle stock) may be mind-blowing enough without adding feedback complexity.
  • It’s a start, and certainly better than no model or extrapolation!

Some of the reasons these models get built are a little less appetizing:

  • In the short run, some loops really aren’t closed (though the short run is rarely as short as you think, and myopia gets you in trouble).
  • They’re quicker and cheaper to build (if you don’t mind less insight).
  • Dynamic modeling skills, both for construction and consumption, are not very widespread.
  • Open-loop models are easier to calibrate (but a calibration neglecting accumulation and feedback is likely bogus and misleading).
  • Open-loop models are easier to manipulate to produce a desired outcome.

I think the last point is key. At Ventana, we’ve discussed – only partly in jest – creating a “propaganda mode” for Vensim and Ventity. This would automate the discovery of a parameterization of a model that both fits history and makes a preferred policy optimal.

Perhaps the ultimate example of this is the RMSM model. 20 years ago, this was the World Bank’s preferred tool for country modeling. When Gerald Barney and Weishuang Qu replicated the model in Vensim, they discovered that is was full of disconnected trees of causality. That would permit creation of a scenario in which GDP growth marched along merrily without any water, for example. Politically, this was actually a feature, not a bug, because some users simply didn’t want to know that their pet project would displace a lot of people or destroy resources.

I think the solution here is to equip people to ask the right questions that close loops. Once there’s an appetite for dynamic, operational thinking, we can supply good modelers to provide the tools.

Big Ideas About Systems

A slide at ISSS wonders what the big ideas about systems are:


Here’s my take:

  • Stocks & flows – a.k.a. states and rates, levels and rates, integration, accumulation, delays – understanding these bathtub dynamics is absolutely central.
  • Feedback -positive and negative feedback, leading to exponential growth and decay and other simple or complex behaviors.
  • Emergence – including the idea that structure determines behavior, the iceberg, and more generally that complex, counter-intuitive patterns can emerge from simple structures.
  • Relationships – ranging from simple connections, to networks, to John Muir’s insight, “When we try to pick out anything by itself, we find it hitched to everything else in the Universe.”
  • Randomness, risk and uncertainty – this does a disservice by condensing a large domain in its own right into an aspect of systems, but it’s certainly critical for understanding the nature of evidence and decision making.
  • Self-reference, e.g., autopoiesis and second-order cybernetics.
  • Evolution – population selection and modification by recombination, mutation and imitation.**
  • Models – recognizing that mental models, diagrams, archetypes and stories can only get you so far – eventually you need simulation and other formal tools.
  • Paradigms – in the sense in which Dana Meadows meant, “The mindset or paradigm out of which the system — its goals, power structure, rules, its culture — arises.”

If pressed for simplification, I’ll take stocks, flows and feedback. If you don’t have those, you don’t have much.

* h/t Angelika Schanda for posting the slide above in the SD Society Facebook group.

** Added following a suggestion by Gustavo Collantes on LinkedIn, which also mentioned learning. That’s an interesting case, because elements of learning are present in ordinary feedback loops, in evolution (imitation), and in self-reference (system redesign).

Why is national modeling hard?

If you’ve followed the work on the System Dynamics National Model, you know that it came to an end uncompleted. Yet, there is a vast amount of interesting structure in the model, and there have been many productive spinoffs from the work. How can this be?

I think there are several explanations. One is that the problem is intrinsically hard. Economies are big, and they operate at many scales. There are micro processes (firms investing in capacity and choosing technologies) but also evolutionary processes (firms getting it wrong die).

This means there’s no one to ask when you want to understand how things work. You can’t ask someone about their car fuel purchase habits and aggregate up to national energy intensity, because their understanding encompasses Ford vs. Chevy, not all the untried and future contingencies in the economic network beyond their limited sphere of influence.

You can’t ask the data. Data must always be interpreted through the lens of a model, and model structure is what we lack. If we had a lot more data, we might be able to infer more about the constraints on plausible structures, but economic data is pretty sparse compared to the number of constructs we need to understand.

In spite of this, dynamic general equilibrium models have managed to model whole economies anyway. Why have they succeeded? I think there are two answers. First, they cheat. They reduce all behavior to an optimization algorithm. That’s guaranteed to yield an answer, but whether that answer has any relevance to the real world is debatable. Second, they give answers that people who fund economic models like: the world is just fine as it is, externalities don’t exist, and all policy interventions are costly.

All this is not to say that we’ll never have useful national models; indeed we already have many models (including the DGEs) that are useful for some purposes. But we still have a long way to go before we have solid macrobehavior from microfoundations to inform policy broadly.


Challenges Sourcing Parameters for Dynamic Models

A colleague recently pointed me to this survey:

Estimating the price elasticity of fuel demand with stated preferences derived from a situational approach

It starts with a review of a variety of studies:

Table 1. Price elasticities of fuel demand reported in the literature, by average year of observation.

This is similar to other meta-analyses and surveys I’ve seen in the past. That means using it directly is potentially problematic. In a model, you’d typically plug the elasticity into something like the following:

Indicated fuel demand 
   = reference fuel demand * (price/reference price) ^ elasticity

You’d probably have the expression above embedded in a larger structure, with energy requirements embodied in the capital stock, and various market-clearing feedback loops (as below). The problem is that plugging the elasticities from the literature into a dynamic model involves several treacherous leaps.

First, do the parameter values even make sense? Notice in the results above that 33% of the long term estimates have magnitude < .3, overlapping the top 25% of the short term estimates. That’s a big red flag. Do they have conflicting definitions of “short” and “long”? Are there systematic methods problems?

Second, are they robust as you plan to use them? Many of the short term estimates have magnitude <<.1, meaning that a modest supply shock would cause fuel expenditures to exceed GDP. This is primarily problem with the equation above (but that’s likely similar to what was estimated). A better formulation would consider non-constant elasticity, but most likely the data is not informative about the extremes. One of the long term estimates is even positive – I’d be interested to see the rationale for that. Perhaps fuel is a luxury good?

Third, are the parameters any good? My guess is that some of these estimates are simply violating good practice for estimating dynamic systems. The real long term response involves a lot of lags on varying time scales, from annual (perceptions of prices and behavior change) to decadal (fleet turnover, moving, mode-switching) to longer (infrastructure and urban development). Almost certainly some of this is ignored in the estimate, meaning that the true magnitude of the long term response is understated.

Stated preference estimates avoid some problems, but create others. In the short run, people have a good sense of their options and responses. But in the long term, likely not: you’re essentially asking them to mentally simulate a complex system, evaluating options that may not even exist at present. Expert judgments are subject to some of the same limitations.

I think this explains why it’s possible to build a model that’s backed up with a lot of expertise and literature at every equation, that fails to reproduce the aggregate behavior of the system. Until you’ve spend time integrating components, reconciling conflicting definitions across domains, and revisiting open-loop estimates in a closed-loop context, you don’t have an internally consistent story. Getting to that is a big part of the value of dynamic modeling.

Towards Principles for Subscripting in Models

For many aspects of models, we have well-accepted rules that define good practice. All physical stocks must have first-order negative feedback on the outflow. Normalize your lookup tables. Thou shalt balance units.

In some areas, the rules haven’t been written down. Subscripts (arrays) are the poor stepchild of dynamic models. They simply didn’t exist when simulation languages emerged, and no one really thinks about them much. They’re treated as a utility, like memory allocation in C, rather than as a key part of the model architecture. I think that needs to change, so this post is attempt to write down some guidance. Consider it a work in progress; I’d be interested in your thoughts.

What’s the Question?

There are really two kinds of questions:

  • How much detail do you want in your model? This is just the age-old problem of aggregation, which I won’t rehash in this post.
  • How do the subscripts you’re using contribute to a transparent, operational description of the system?

It’s the latter I’m concerned with. In essence: how do you implement a given level of detail so that the array structure makes sense? Continue reading “Towards Principles for Subscripting in Models”

Who cares if your model is rubbish?

All models are wrong, so does it matter if your model is more wrong than necessary?

If you’re thinking “no,” you’re not alone (but you won’t like this blog). Some models are used successfully for pure propaganda. Like the Matrix, they can be convincing for those who don’t get too curious about what lies beneath. However, if that’s all we learn to do with models, we’re doomed. The real potential of models is for improving control, by making good contingent predictions of “what might happen if we do X.”

Doing the best possible job of that involves tradeoffs among scope, depth and quality, between formal and informal methods, and between time spent modeling and time spent on everything else – data collection, group process, and execution. It’s difficult to identify the best choices for a given messy situation.

You can hide ugly aspects of a model by embedding it in a fancy interface, or by showing confidence bounds on simulations without examining individual trajectories. But if you take the low (quality) road, you’re cheating yourself, your clients and the world out of a lot of good insight.


  • You’ll make bad decisions.
  • You won’t learn much, or at least you won’t learn much that’s right.
  • You’ll get into trouble when you attempt to reuse or extend the model later.
  • People will find out. Maybe. (Sadly, if the situation is complex enough, they won’t.) Eventually, this may affect your credibility.
  • You will get less recognition for your work. (Models that are too large, and insufficiently robust, are the primary failure mode in the papers I review.)
  • The process will destroy your soul, or at least your brain.

That last point is the dealbreaker for me. I’m into modeling for the occasional glimpses of truth and beauty. Without that, it’s no fun. Continue reading “Who cares if your model is rubbish?”